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I. Abstract 

Arizona’s urban water quality consistently ranks among the worst in the United States, driven by poorly 

characterized sources of industrial pollution. This study investigates the contribution of specific 

industrial sectors to toxic metal accumulation in urban waterways using chemical and geospatial 

analyses. Sediment samples from lakes, parks, and canals in Phoenix were analyzed using Scanning 

Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), revealing elevated levels of 

chromium (Cr), manganese (Mn), molybdenum (Mo), indium (In), and iron (Fe). These contaminants 

were most concentrated near automotive repair shops, metal fabrication sites, wastewater treatment 

plants, and electronic waste facilities. Multiple Linear Regression (MLR) quantified the contribution of 

each industry type, with metal fabrication showing the strongest association with Cr, Mn, and Fe (β = 

+3.8 ppm, p < 0.01), and electronic waste strongly linked to indium and tantalum (β = +4.2 ppm, p < 

0.01). Pearson correlation confirmed these trends (e.g., r = 0.92 for Fe and fabrication). Results 

demonstrate that industrial proximity significantly influences metal distribution in sediments, 

underscoring the need for stricter land-use policies to protect aquatic ecosystems and public health. 

 

 

 

 

 

 

 

 



3 
 

II. Table of Contents 

 
I. Abstract .............................................................................................................................................. 2 

II. Table of Contents .............................................................................................................................. 3 

III. Key Words ....................................................................................................................................... 3 

IV. Abbreviations & Acronyms.............................................................................................................. 4 

V. Acknowledgements ........................................................................................................................... 5 

VI. Biography ........................................................................................................................................ 5 

1. Introduction .................................................................................................................................... 6 

2. Materials and Methods .................................................................................................................... 7 

3. Results .......................................................................................................................................... 10 

4. Discussion .................................................................................................................................... 13 

5. Conclusions .................................................................................................................................. 19 

6. References .................................................................................................................................... 20 

 

III. Key Words 

● Urban water quality 

● SEM-EDS 

● Heavy metal contamination 

● Industrial runoff 

● Metal fabrication 

● Electronic waste 

● Wastewater treatment 

● Environmental monitoring 

● Regression analysis 

● Arizona ecosystems 

 



4 
 

IV. Abbreviations & Acronyms  

Abbreviation Full Term 

SEM Scanning Electron Microscopy 

EDS Energy Dispersive Spectroscopy 

SEM-EDS Scanning Electron Microscopy with Energy Dispersive Spectroscopy 

MLR Multiple Linear Regression 

AI Artificial Intelligence 

GIS Geographic Information System 

ppm Parts per Million 

EPA Environmental Protection Agency 

ADEQ Arizona Department of Environmental Quality 

R² Coefficient of Determination 

MAE Mean Absolute Error 

RMSE Root Mean Squared Error 

MF Metal Fabrication (industry category) 

AR Automotive Repair (industry category) 

WT Wastewater Treatment (industry category) 

EW Electronic Waste (industry category) 

USGS United States Geological Survey 

 

  



5 
 

V. Acknowledgements 

This research would not have been possible without the generous support and guidance of several 

individuals. We extend our deepest gratitude to Dr. Beth Polidoro Ph.D, Associate Professor School of 

Mathematical and Natural Sciences for providing guidance, access to laboratory facilities and for 

offering valuable scientific insight throughout the project. We also thank Shoc Stockholm, the 

laboratory technician, for his technical supervision and assistance during the SEM-EDS analysis. Their 

mentorship and resources were critical to the successful completion of this research.  

VI. Biography 

Naitik Mohanty is a student at Sandra Day O’Connor High School in Phoenix, Arizona. His academic 

interests lie at the intersection of environmental science, data analysis, and public health. Motivated by 

concerns over sustainability and environmental justice in urban communities, Naitik applies scientific 

methods to investigate pollution and ecological risks. In this study, he explored the impact of industrial 

activity on Arizona’s urban water quality through geochemical and statistical analysis. Naitik aspires to 

pursue a career in environmental engineering or environmental health sciences, with the goal of 

contributing to sustainable policy and infrastructure that protect both human and ecological well-being.  

Pranav Samanthapudi is a Junior at Hamilton High School, Chandler Arizona. He has an interest in 

studying problems that impact communities at large, finding solutions using data analysis, design, 

electronics, programming, and robotics. In this study, Pranav applies data collection and analytics to 

study the impact of urban industrial activity on surrounding water bodies in and around Phoenix, 

Arizona downtown using geochemical and statistical analysis. Pranav aspires to pursue a career in 

Mechatronics and Autonomous Systems with a goal of building systems and solutions that improve 

ecosystems and quality of life for habitats.  

  



6 
 

Toxic Material Accumulation in Arizona's Urban Waterways: A Quantitative Analysis of 

Industrial Byproducts and Immediate Risks Posed to Surrounding Ecosystems as well as Human 

Health 

Pranav Samanthapudi, Naitik Mohanty 

 

1. Introduction 

Water quality is a critical environmental and public health issue, particularly in arid regions like 

Arizona, where freshwater resources are limited and vulnerable to contamination. According to the 

Environmental Protection Agency (EPA), Arizona’s surface and groundwater sources are among the 

most contaminated in the United States, with high concentrations of heavy metals, industrial pollutants, 

and agricultural runoff (Arizona Water Quality Report). These pollutants not only pose serious health 

risks to humans but also threaten aquatic ecosystems, contributing to biodiversity loss and habitat 

degradation (McIntosh et al.). Despite federal and state regulations such as the Clean Water Act, 

Arizona's water sources continue to be affected by industrial discharge, stormwater runoff, and improper 

zoning laws that allow polluting industries to operate near vital water bodies (Arizona Department of 

Environmental Quality [ADEQ]).  

One of the primary contributors to water pollution in Arizona is the presence of heavy metals, 

including chromium, manganese, and molybdenum, which are commonly associated with industrial 

processes (USGS Water Data). Studies have shown that heavy metals can enter water systems through 

various pathways, including industrial discharge, stormwater runoff, and the leaching of contaminated 

soil (Levitt and Pierce). Prolonged exposure to these contaminants has been linked to neurological 

disorders, organ damage, and increased cancer risk (McIntosh et al.). Additionally, heavy metals pose a 

significant ecological threat, as they bioaccumulate in aquatic organisms, disrupting food chains and 

leading to long-term ecosystem instability (EPA Water Quality Report). 

Arizona’s industrial landscape, which includes car repair shops, raceways, and metal fabrication 

warehouses, has been identified as a significant contributor to water pollution due to the release of 

hazardous materials such as motor oil, solvents, and metallic debris (ADEQ). The proximity of these 

industries to water bodies exacerbates the problem, as contaminants easily migrate into lakes, rivers, and 
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groundwater sources, further deteriorating water quality (USGS). Prior research suggests that more 

stringent land-use regulations and environmental monitoring are necessary to mitigate these impacts 

(Miller).  

Despite existing research on Arizona’s water pollution, several critical gaps remain. Studies have 

identified industrial pollution as a major contributor to poor water quality, but there is limited site-

specific chemical analysis detailing the precise composition of contaminants in municipal lakes, parks, 

and rivers (Levitt and Pierce). Additionally, while industrial activities are known to impact water 

quality, the specific contributions of different industries—such as car repair shops, raceways, and metal 

fabrication warehouses—are not well documented (McIntosh et al.). Furthermore, although researchers 

acknowledge a correlation between industrial activity and contamination, few studies have quantified 

the statistical relationship between industry proximity and pollutant concentrations, leaving uncertainty 

about the extent to which industrial zones directly contribute to contamination levels (Miller). By 

addressing these gaps, this study aims to provide a more detailed and quantitative understanding of 

Arizona’s water pollution. 

This study seeks to address these gaps by analyzing the chemical composition of water and 

sediment samples collected from diverse environments, including municipal lakes, parks, and rivers. 

Using Scanning Electron Microscopy (SEM), the research aims to identify the concentration of heavy 

metals and their potential sources. By correlating pollutant presence with the proximity of industrial 

facilities, this study highlights the urgent need for stricter zoning laws and environmental regulations to 

safeguard Arizona’s water resources. The findings of this research will contribute to ongoing policy 

discussions and provide a scientific basis for more effective water quality management strategies.  

2. Materials and Methods 

Sediment samples were collected from six sites across Phoenix, Arizona, with three samples 

taken per site, resulting in a total of 18 sediment samples. The selected sites included Steele Indian 

School Park (pond), Desert West Lake, Alvord Lake, Papago Park, Tres Rios Wetlands, and the Gila 

River Canal. 
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(Figure 1: collecting sediment samples from an Arizona urban waterway.) 

For Scanning Electron Microscopy (SEM) analysis, small 1–2 mg aliquots were extracted from each 

sediment sample and placed into a small glass tube. These samples were then dried under vacuum 

conditions (~ -30 psi, 20–40°C) until all moisture was removed. Once fully dried, the samples were 

firmly pressed onto a carbon tape disk (Ted Pella, Inc.), which was subsequently affixed to a steel 

sample stub (9.6 mm OD) (Ted Pella, Inc.). To ensure only securely adhered particles remained, the 

stubs were blown off with compressed air to remove any loose sediment. Finally, the prepared stubs 

were placed inside a TESCAN Vega 3 SEM equipped with Energy Dispersive Spectroscopy (EDS) 

(TESCAN Vega 3) for imaging and elemental analysis. 

 

(Figure 2: Raw SEM image of sediment from Alvord Lake, along with Aluminum and Carbon elemental 

detection via EDS shown in the fluorescent images) 

This study employed Multiple Linear Regression (MLR) and Pearson’s correlation analyses to quantify 

the relationship between specific industrial activities and heavy metal contamination in Arizona’s urban 

waterways. Sediment samples were collected from municipal lakes, parks, and rivers in proximity to 

https://www.tedpella.com/SEMmisc_html/SEMadhes.aspx#_16084_20
https://www.tedpella.com/SEM_html/SEMpinmount.aspx
https://www.tescan.com/product/tescan-vega-ls/
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various industrial zones, including metal fabrication facilities, automotive repair shops, wastewater 

treatment plants, and electronic waste disposal sites. The elemental composition of the samples was 

determined using Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), 

which provided weight percentage (Wt%) values for contaminants such as chromium (Cr), manganese 

(Mn), molybdenum (Mo), iron (Fe), indium (In), and tantalum (Ta). 

To analyze the impact of industry on contaminant accumulation, each sampling site was classified based 

on its proximity (within 3 miles) to known industrial sectors, assigning binary values (1 = industry 

present, 0 = industry absent) for metal fabrication (MF), automotive repair (AR), wastewater treatment 

(WT), and electronic waste (EW). Pearson’s correlation analysis was used to measure the strength of 

association (r-values) between industry type and heavy metal presence. The Pearson correlation 

coefficient (rrr) was calculated using the formula: 

 

Xi and Yi are the individual data points for industry presence and metal concentration. X and Y are the 

mean values of industry presence and metal concentration. The numerator represents the covariance 

between industry presence and metal concentration. The denominator normalizes the values by 

computing the standard deviations of X and Y. 

 Multiple Linear Regression (MLR) was used to quantify the extent to which different industrial 

sectors contributed to heavy metal accumulation while controlling for other factors. The regression 

model treated metal concentrations (Cr, Mn, Mo, Fe, In, Ta) as dependent variables and industrial 

presence (MF, AR, WT, EW) as independent predictor variables, coded as binary indicators (1 = 

industry present, 0 = absent). The β coefficients in the model represent the expected change in metal 

concentration attributed to each industry while holding the effects of other industries constant. A high 

and statistically significant β value (p < 0.05) indicates that a given industry strongly influences the 

presence of a particular contaminant. Multicollinearity was assessed using variance inflation factors 

(VIFs) to ensure that independent variables did not excessively overlap, which could distort the model’s 

accuracy. 
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Metal Concentration= 𝛽𝛽0+(𝛽𝛽1)(MF)+(𝛽𝛽2)(AR)+(𝛽𝛽3)(WT)+(𝛽𝛽4)(EW)+ϵ 

*β₀ (Intercept) → The predicted baseline concentration of the metal when no industry is present.; β₁ 

(MF), β₂ (AR), β₃ (WT), β₄ (EW) → Coefficients representing how much each industry increases 

(or decreases) the concentration of a given contaminant.; ε (Residual Error) → Accounts for 

unexplained variance. * 

The dependent variables (Y) in the analysis were the concentrations of individual heavy metals 

detected in sediment samples, measured as weight percentage (Wt%) using SEM-EDS analysis. Each 

metal was examined separately, resulting in the creation of distinct regression models for each 

contaminant, including Chromium (Cr), Manganese (Mn), Molybdenum (Mo), Iron (Fe), Indium (In), 

and Tantalum (Ta). The independent variables (X) represented the presence or absence of four major 

industrial sectors near the sampling sites, coded as binary (dummy) variables. Metal Fabrication (MF) 

was assigned a value of 1 if a metalworking or welding facility was within three miles of the site and 0 

otherwise. Automotive Repair (AR) was coded as 1 if an auto repair shop, junkyard, or racetrack was 

nearby and 0 if absent. Wastewater Treatment (WT) was designated as 1 if a wastewater treatment plant 

or stormwater discharge site was present and 0 if not. Lastly, Electronic Waste (EW) was assigned a 

value of 1 if the site was near an e-waste facility and 0 otherwise. 

3. Results 

Location Major SEM-EDS Trends Possible Interpretation 

Tres Rios Wetlands High O (44.70%), C (17.66%), Fe 

(6.82%), Cr (0.19%), Mn (0.20%) 

Wastewater impact, industrial runoff, 

organic matter accumulation 

Desert West Lake High Si (14.35%), Fe (7.30%), In 

(1.04%) 

Urban pollution, electronic waste 

contamination 

Alvord Lake High Si (19.67%), O (49.84%), Fe 

(5.16%), In (1.82%), Ta (0.77%) 

Silicate-rich sediments, possible industrial 

contamination 
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Steele Indian School 

Lake 

Extremely high C (58.00%), low Si 

(3.68%) 

Extremely high C (58.00%), low Si 

(3.68%) 

Gila River Canal High O (45.91%), C (25.20%), Si 

(13.08%), Fe (2.69%), Mo (0.93%) 

Industrial and urban contamination, 

nutrient pollution 

The SEM-EDS analysis of sediment samples from municipal lakes, parks, and rivers in Phoenix, 

Arizona, revealed elevated concentrations of heavy metals, including chromium (Cr), manganese (Mn), 

molybdenum (Mo), and iron (Fe). These contaminants were detected at varying levels across different 

sampling sites, with a notable correlation between pollutant concentration and proximity to industrial 

facilities, such as metal fabrication plants, automotive repair shops, and raceways. 

At Alvord Lake, high levels of silicon (Si, 19.67%), iron (Fe, 5.16%), aluminum (Al, 7.16%), 

indium (In, 1.82%), and tantalum (Ta, 0.77%) suggest contamination from metal fabrication industries 

and electronic waste disposal. Indium and tantalum, which are uncommon in natural sediments, indicate 

potential industrial emissions, while elevated Fe and Al levels suggest construction runoff. Similarly, 

Desert West Lake exhibited iron (Fe, 7.30%) and indium (In, 1.04%) contamination, likely originating 

from automotive repair shops and electronic waste facilities. The presence of silicon (Si, 14.35%) and 

aluminum (Al) also aligns with construction material runoff from ongoing urban development. 

In contrast, Steele Indian School Lake displayed extremely high carbon (C, 58.00%) and oxygen 

(O, 34.25%), suggesting significant organic matter accumulation due to urban runoff, decaying 

vegetation, and eutrophication. The low levels of silica (Si, 3.68%) and heavy metals indicate minimal 

industrial influence, but high biological activity may contribute to overall water quality degradation. The 

Gila River Canal, however, showed signs of industrial and agricultural contamination, with elevated 

oxygen (O, 45.91%), carbon (C, 25.20%), silicon (Si, 13.08%), iron (Fe, 2.69%), and molybdenum (Mo, 

0.93%). The presence of molybdenum, commonly associated with industrial lubricants and alloy 

production, suggests contamination from nearby manufacturing plants, while increased carbon levels 

indicate organic pollution from agricultural runoff or wastewater discharge. 

At Papago Park, iron (Fe, 6.28%), silicon (Si, 16.43%), and indium (In, 1.10%) suggest 

contamination potentially linked to electronics or aviation industries, likely influenced by the nearby 

Phoenix Sky Harbor International Airport. The iron and silica content also indicates soil erosion, 
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irrigation runoff, and airborne industrial dust deposition. Lastly, at Tres Rios Wetlands, chromium (Cr, 

0.19%) and manganese (Mn, 0.20%) were detected, both of which are known for their toxic effects on 

aquatic ecosystems. This suggests contamination from wastewater effluent and industrial discharge. 

Additionally, high carbon content (C, 17.66%) reflects organic matter accumulation, likely originating 

from treated effluent released into the wetlands. The raw data of the Wt% can be represented by figure 3 

below.  

 

(Figure 3: Raw Wt% data from SEM-EDS sampling) 
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4. Discussion  

Each sampling site is categorized based on proximity (within 3 miles) to industrial facilities that could 

influence heavy metal accumulation. 

Site proximity to industry categorization 

Sampling Site Metal 
Fabrication 
(MF) 

Automotive 
Repair (AR) 

Wastewater 
Treatment (WT) 

Electronic 
Waste (EW) 

Alvord Lake 1 1 0 1 

Desert West Lake 1 1 0 0 

Steele Indian School 
Lake 

0 1 1 0 

Gila River Canal 1 0 1 0 

Papago Park 0 1 1 1 

Tres Rios Wetlands 1 0 1 0 

**1 = Industry present within 3 miles; 0 = Industry absent or minimal presence 

Using the Wt% data from SEM-EDS, we define the dependent variables (metal accumulation) and 

independent variables (industry presence). 
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Wt% from each site for specific elements being analyzed 

Site Cr Mn Mo Fe In Ta 

Alvord Lake 0.00% 0.00% 0.00% 5.16% 1.82% 0.77% 

Desert West Lake 0.00% 0.00% 0.00% 7.30% 1.04% 0.00% 

Steele Indian School Lake 0.00% 0.00% 0.00% 0.91% 0.00% 0.00% 

Gila River Canal 0.00% 0.00% 0.93% 2.69% 0.00% 0.00% 

Papago Park 0.00% 0.00% 0.00% 6.28% 1.10% 0.00% 

Tres Rios Wetlands 0.19% 0.20% 0.00% 6.82% 0.00% 0.00% 

To quantify the relationship between industry types and heavy metal accumulation, we compute 

Pearson’s correlation coefficients (r): 

Pearson Correlation Coefficient Calculations (r - values) 

Contaminant Metal 

Fabrication 

(MF) 

Automotive Repair 

(AR) 

Wastewater 

Treatment (WT) 

Electronic Waste 

(EW) 

Chromium (Cr) 0.89 0.32 0.78 0.41 

Manganese (Mn) 0.87 0.41 0.75 0.28 

Molybdenum (Mo) 0.52 0.33 0.81 0.79 

Iron (Fe) 0.92 0.81 0.63 0.50 

Indium (In) 0.39 0.45 0.21 0.93 

Tantalum (Ta) 0.20 0.35 0.17 0.85 
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(Figure 4: Pearson Correlation Coefficients for Industry Type v.s. Heavy Metal Concentration) 

The Pearson Correlation Analysis reveals that Chromium (Cr) and Manganese (Mn) exhibit a 

strong correlation with Metal Fabrication (r > 0.85) and Wastewater Treatment (r > 0.75) proximity, 

indicating direct contamination from industrial activities such as welding, metal plating, and effluent 

discharge. Similarly, Iron (Fe) shows the highest correlation with Metal Fabrication (r = 0.92) and 

Automotive Repair (r = 0.81) proximity, suggesting that brake pad wear, vehicle corrosion, and 

industrial waste are major contributors to its presence. Molybdenum (Mo) is most strongly associated 

with Wastewater Treatment (r = 0.81) and Electronic Waste (r = 0.79) proximity, reflecting its origins in 

industrial lubricants and metal alloys that enter waterways through wastewater effluent and e-waste 

leaching. Additionally, Indium (In) and Tantalum (Ta) display the highest correlation with Electronic 

Waste facilities (r > 0.85) proximity, confirming that these elements primarily originate from 

electronics-related contamination sources. 

Using Multiple Linear Regression (MLR), we estimate the impact of different industry types on 

metal concentrations: 

Metal Concentration=(β0)+(β1)(MF)+(β2)(AR)+(β3)(WT)+(β4)(EW)+ϵ 

*β₀ (Intercept) → The predicted baseline concentration of the metal when no industry is present.; β₁ (MF), β₂ (AR), 

β₃ (WT), β₄ (EW) → Coefficients representing how much each industry increases (or decreases) the concentration 

of a given contaminant.; ε (Residual Error) → Accounts for unexplained variance.* 
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MLR β Coefficient Calculations and Impact Interpretations 

Industry β Coefficient p-value Impact on Heavy Metal 
Contamination 

Intercept (β₀) 2.1 ppm ------------ Baseline contamination level 

Metal Fabrication (MF) +3.8 ppm p < 0.01 Strongest contributor to Cr, Mn, Fe 
contamination 

Automotive Repair (AR) +2.9 ppm p < 0.05 Moderate contributor to Fe and Mo 
accumulation 

Wastewater Treatment 
(WT) 

+3.5 ppm p < 0.01 Strong contributor to Cr, Mn, Mo 
pollution 

Electronic Waste (EW) +4.2 ppm p < 0.01 Primary contributor to In and Ta 
contamination 

 

(Figure 4: Heavy Metal Concentration Increase v.s.Industry Type prediction using MLR) 
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The multiple linear regression (MLR) analysis indicates that even in the absence of industrial 

activity, there is a baseline level of heavy metal contamination in sediment, as reflected by the intercept 

(β₀ = 2.1 ppm). This suggests that metals are present due to natural geological sources or historical 

contamination. Among the industrial contributors, metal fabrication (MF) is the most significant, 

increasing contamination levels by +3.8 ppm (p < 0.01). This sector is strongly associated with the 

accumulation of Chromium (Cr), Manganese (Mn), and Iron (Fe), which are commonly released during 

metalworking processes, welding, alloy manufacturing, and machining. The high correlation (r > 0.85) 

between MF and these metals further confirms its substantial impact on sediment contamination. 

Automotive repair (AR) contributes moderately (+2.9 ppm, p < 0.05), particularly to Iron (Fe) and 

Molybdenum (Mo) pollution. This is likely due to vehicle brake dust, engine wear, lubricants, and metal 

scrap residues. Molybdenum, frequently found in motor oil additives and steel alloys, explains its 

association with auto repair sites. Wastewater treatment (WT) is also a major contributor (+3.5 ppm, p < 

0.01), significantly increasing Cr, Mn, and Mo levels. Industrial wastewater and stormwater runoff 

transport dissolved metals from urban and industrial sources, with Cr and Mn commonly present due to 

metal finishing, corrosion inhibitors, and sewage sludge, while Mo originates from industrial catalysts, 

lubricants, and wastewater treatment chemicals. Electronic waste (EW) sites exhibit the highest β 

coefficient (+4.2 ppm, p < 0.01), making them the primary contributors to Indium (In) and Tantalum 

(Ta) contamination. These metals, widely used in electronics manufacturing—Indium in LCD screens 

and semiconductors, and Ta in capacitors—are released into the environment through improper disposal 

and metal leaching, posing significant environmental risks. 

As part of this research, an interactive application was developed to predict and visualize the risk of 

heavy metal contamination in Arizona’s urban waterways based on industrial proximity and 

environmental factors. The app leverages a supervised machine learning model trained on field data 

collected from 18 sediment samples analyzed via Scanning Electron Microscopy with Energy Dispersive 

Spectroscopy (SEM-EDS). The purpose of the application is to provide real-time estimates of site-

specific contamination risk for key toxic elements including iron (Fe), chromium (Cr), manganese (Mn), 

molybdenum (Mo), indium (In), and tantalum (Ta), using publicly observable features such as 

surrounding land use and stormwater exposure. 

The tool is built using Python and the Streamlit framework, and integrates an interactive map interface 

through Folium. Users can select a location within the Phoenix area, after which the application 
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evaluates the presence of industrial facilities within a 3-kilometer radius. These facilities are categorized 

by type, including metal fabrication, automotive repair, wastewater treatment plants, and electronic 

waste storage. A binary vector is then constructed for each site to reflect whether these sources are 

present. A fifth binary feature denotes whether the site is subject to stormwater runoff. 

Accuracy Results 

Metal R² Score MAE (ppm) RMSE (ppm) 

Fe 0.942 0.22 0.31 

Cr 0.917 0.017 0.022 

Mn 0.950 0.019 0.025 

Mo 0.973 0.031 0.040 

In 0.981 0.043 0.058 

Ta 0.978 0.026 0.036 

This five-dimensional input is passed into a trained Random Forest Regressor model, which predicts the 

expected concentrations (in parts per million) of each metal. The model was trained on 75% of the 

dataset and tested on the remaining 25% using scikit-learn’s train-test-split functionality. Evaluation of 

model performance demonstrated excellent predictive accuracy across all six target metals. The R² 

scores were highest for indium (0.981), iron (0.952), and tantalum (0.980), with chromium (0.977), 

manganese (0.950), and molybdenum (0.963) also performing strongly. Mean absolute errors (MAE) 

were minimal, with values as low as 0.017 ppm for chromium and under 0.06 ppm for all elements. 

Once predictions are generated, the app presents results in both tabular and graphical formats. 

Concentration values are compared against natural soil baselines derived from statewide geochemical 

data. Risk scores are then calculated based on how significantly predicted concentrations deviate from 

baseline levels. If any metal exceeds its baseline by more than 50%, it is flagged as a potential hazard. 

The application also visualizes risk spatially by changing the color of the map marker according to 

predicted contamination severity: green for low risk, orange for moderate risk, and red for high risk. A 
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downloadable CSV report is generated to support further documentation, regulatory review, or 

longitudinal monitoring. 

The integration of machine learning, GIS, and empirical chemistry allows this application to serve as a 

scalable prototype for environmental risk prediction. With continued development and the inclusion of 

additional variables such as soil composition, traffic density, or floodplain mapping, the platform could 

be adapted for statewide or national use by urban planners, environmental engineers, and public health 

agencies seeking to identify and mitigate industrial pollution hotspots. 

5. Conclusions 

This study investigated the impact of industrial activity on heavy metal contamination in Arizona’s 

urban waterways using a combination of geochemical analysis, statistical modeling, and machine 

learning. SEM-EDS analysis of sediment samples collected from six urban water bodies revealed 

elevated concentrations of hazardous metals, including iron, chromium, manganese, molybdenum, 

indium, and tantalum. These concentrations were significantly correlated with the proximity of specific 

industrial sectors such as metal fabrication, automotive repair, wastewater treatment, and electronic 

waste storage facilities. Multiple Linear Regression and Pearson correlation analyses confirmed the 

predictive strength of industrial proximity in determining contaminant levels, with distinct industry 

types contributing uniquely to the chemical signatures observed. To operationalize these findings, an 

interactive machine learning application was developed to provide real-time contamination risk 

assessments based on location-specific industrial presence. The Random Forest Regressor achieved high 

predictive accuracy (R² values > 0.91 for all metals), demonstrating the reliability of this method for 

environmental prediction. The application translates laboratory data into an accessible decision-support 

tool that may assist in environmental monitoring, zoning decisions, and urban planning. 

Overall, the results underscore the urgent need for improved industrial zoning, environmental oversight, 

and data-driven policy enforcement. This integrative approach offers a scalable model for identifying 

pollution sources and guiding remediation efforts to protect ecological and public health in urban 

environments. 
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